
Software Engineering

and Architecture

Some General Observations

on the Mandatory

From the Trenches…

• Code duplication is…

• … a place where you clean code

AU CS Henrik Bærbak Christensen 2

“Inner” and “Outer”

Encapsulation:

Who can do what?

How do I?

• Switch from channel TV2 to DR on my Samsung TV set?

• A) Push the Button ‘3’ on the TV’s remote control

interface?

• B) Call Samsung to tell them to send a man to re-solder

the wire inside the TV set?

• Some of you accidentally use method B

CS@AU Henrik Bærbak Christensen 4

Example

• What happens when I want a SigmaStone variant?

– I have to call you guys to resolder the wires inside!

AU CS Henrik Bærbak Christensen 5

From the Trenches

• Or – your own code…

AU CS Henrik Bærbak Christensen 6

From the Trenches

• Or…

AU CS Henrik Bærbak Christensen 7

Frameworks

• What is the process in the mandatory exercises?

– To use TDD and compositional design to transform an

AlphaStone application into a HotStone framework

• Frameworks are

– Reusable software designs and implementations

– Must be reconfigurable from the outside

• Just like a TV set

• Example

– Android Google’s smartphone OS

– You do not call Google to make them rewrite their constructor in

order to introduce the App for your HCI course, do you!?!

CS@AU Henrik Bærbak Christensen 8

Open/Closed

• Open for Extension (I can adapt the framework)

• Closed for Modification (But I cannot rewrite the code)

• Change by addition, not by modification

• So

• … is not suitable for implementing frameworks…

– I have to open the TV to solder the wires inside

– You have to call Google to make your HCI project app

CS@AU Henrik Bærbak Christensen 9

So…

• Keep StandardGame, (StandardHero, StandardCard), …

closed for modification! General enough to handle many

variants

– They form the framework that is reused as-is

• Allow adapting HotStone to a new variant by addition

– I can code a new DeckBuildingStrategy which allows users to

load a deck that they have crafted in a deck editor…

– I can code a PriestHero which can heal minions on field…

– And provide my strategies in the constructor of your StdGame

– And it will do the right thing…

CS@AU Henrik Bærbak Christensen 10

Uncle Bob???

• What about Uncle Bob?

– Though shall not have more than two parameters as arguments

• Disobey him for now…

– GameImpl(WinnerStrategy winnerStrategy, …………………..)

• We will refactor HotStone soon to fix it…

– Abstract Factory…

AU CS Henrik Bærbak Christensen 11

You Can Do More Outside

Inner and Outer have different Rules!

AU CS Henrik Bærbak Christensen 12

Parametric Variant

• Example:

– GammaStone requirement: Heroes do different things

AU CS Henrik Bærbak Christensen 13

HotStone Framework
Code

Coded by switching within
StandardGame

Parametric Variant

• Example:

– GammaStone requirement: Heroes do different things

AU CS Henrik Bærbak Christensen 14

HotStone Framework
Code

Liability: HotStone has hard bindings
to specific Hero types. Only Change by

Modification!

The Worst of All Worlds design

• Example:

– GammaStone requirement: Heroes do different things

AU CS Henrik Bærbak Christensen 15

GammaStone Delegates

HeroActionStrategy

The Worst of All Worlds design

• Example:

– GammaStone requirement: Heroes do different things

AU CS Henrik Bærbak Christensen 16

GammaStone Delegates

HeroActionStrategy

REALLY BAD: If you have hero-type
switching code in GameImpl, you
still have a parametric solution

with all its liabilities!!!
Plus all the extra interfaces of the

compositional approach.

DO THE SAME THING
THE SAME WAY!!!

Compositional Variant

• Example:

– GammaStone requirement: Heroes do different things

AU CS Henrik Bærbak Christensen 17

HotStone Framework
Code:

GammaStone Delegates

ThaiDanishHeroStrategy

Compositional Variant

• Example:

– GammaStone requirement: Heroes do different things

AU CS Henrik Bærbak Christensen 18

HotStone Framework
Code:

GammaStone Delegates

ThaiDanishHeroStrategy

Compositional Variant

• Example:

– GammaStone requirement: Heroes do different things

AU CS Henrik Bærbak Christensen 19

HotStone Framework
Code:

GammaStone Delegates

ThaiDanishHeroStrategy

This is a much better design!
Why?

Because a) No hard binding in Game b)
GammaStone requirements are expressed

explicitly in a single piece of code that bears the
correct name!

Compositional Variant

• And you can avoid the switching completely

– Put the ‘power strategy’ into the Hero implementation instead;

fetch it, and then apply it…

– Requires a ‘HeroBuildingStrategy’ to create the proper Hero

types, then…

• Critique: Approaching is a way to implement subclassing

by hand ☺…
AU CS Henrik Bærbak Christensen 20

Inner and Outer

• Keep inner code (framework code) clean of variability

switching code; have it in the outer code (delegates)!

AU CS Henrik Bærbak Christensen 21

HotStone Framework
Code:

General Game
implementation,
general Hero and

Card
implementations

Delegates

HeroAction

WinnerDetermination
WinnerDetermination

….

Closed for
Modification

Open for
Extension

Clean Code: Prefer Exceptions

Uncle Bob

• Prefer exceptions over returning status codes

– Throw PageDoesNotExistException instead of

return E_PAGE_DOES_NOT_EXIST

• So why have you decided on the Status enum???

• Argument

– Hm hm hm… None!

– Conclusion: On the ToDo list for next year

• But keep it as the GUI will assume it!

AU CS Henrik Bærbak Christensen 23

	Slide 1: Software Engineering and Architecture
	Slide 2: From the Trenches…
	Slide 3: “Inner” and “Outer”
	Slide 4: How do I?
	Slide 5: Example
	Slide 6: From the Trenches
	Slide 7: From the Trenches
	Slide 8: Frameworks
	Slide 9: Open/Closed
	Slide 10: So…
	Slide 11: Uncle Bob???
	Slide 12: You Can Do More Outside
	Slide 13: Parametric Variant
	Slide 14: Parametric Variant
	Slide 15: The Worst of All Worlds design
	Slide 16: The Worst of All Worlds design
	Slide 17: Compositional Variant
	Slide 18: Compositional Variant
	Slide 19: Compositional Variant
	Slide 20: Compositional Variant
	Slide 21: Inner and Outer
	Slide 22: Clean Code: Prefer Exceptions
	Slide 23: Uncle Bob

