
Software Engineering

and Architecture

Some General Observations

on the Mandatory



From the Trenches…

• Code duplication is…

• … a place where you clean code
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“Inner” and “Outer”

Encapsulation:

Who can do what?



How do I?

• Switch from channel TV2 to DR on my Samsung TV set?

• A) Push the Button ‘3’ on the TV’s remote control 

interface?

• B) Call Samsung to tell them to send a man to re-solder 

the wire inside the TV set?

• Some of you accidentally use method B

CS@AU Henrik Bærbak Christensen 4



Example

• What happens when I want a SigmaStone variant?

– I have to call you guys to resolder the wires inside!
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From the Trenches

• Or – your own code…
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From the Trenches

• Or…
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Frameworks

• What is the process in the mandatory exercises?

– To use TDD and compositional design to transform an 

AlphaStone application into a HotStone framework 

• Frameworks are

– Reusable software designs and implementations

– Must be reconfigurable from the outside

• Just like a TV set

• Example

– Android  Google’s smartphone OS

– You do not call Google to make them rewrite their constructor in 

order to introduce the App for your HCI course, do you!?!
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Open/Closed

• Open for Extension     (I can adapt the framework)

• Closed for Modification   (But I cannot rewrite the code)

• Change by addition, not by modification

• So

• … is not suitable for implementing frameworks…

– I have to open the TV to solder the wires inside 

– You have to call Google to make your HCI project app 
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So…

• Keep StandardGame, (StandardHero, StandardCard), … 

closed for modification! General enough to handle many 

variants

– They form the framework that is reused as-is

• Allow adapting HotStone to a new variant by addition

– I can code a new DeckBuildingStrategy which allows users to 

load a deck that they have crafted in a deck editor…

– I can code a PriestHero which can heal minions on field…

– And provide my strategies in the constructor of your StdGame

– And it will do the right thing…
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Uncle Bob???

• What about Uncle Bob?

– Though shall not have more than two parameters as arguments

• Disobey him for now…

– GameImpl(WinnerStrategy winnerStrategy, …………………..)

• We will refactor HotStone soon to fix it…

– Abstract Factory…
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You Can Do More Outside

Inner and Outer have different Rules! 
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Parametric Variant

• Example: 

– GammaStone requirement: Heroes do different things
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HotStone Framework 
Code

Coded by switching within
StandardGame



Parametric Variant

• Example: 

– GammaStone requirement: Heroes do different things
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HotStone Framework 
Code

Liability: HotStone has hard bindings 
to specific Hero types. Only Change by 

Modification!



The Worst of All Worlds design

• Example: 

– GammaStone requirement: Heroes do different things
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GammaStone Delegates

HeroActionStrategy



The Worst of All Worlds design

• Example: 

– GammaStone requirement: Heroes do different things
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GammaStone Delegates

HeroActionStrategy

REALLY BAD: If you have hero-type 
switching code in GameImpl, you 
still have a parametric solution 

with all its liabilities!!!
Plus all the extra interfaces of the 

compositional approach.

DO THE SAME THING 
THE SAME WAY!!!



Compositional Variant

• Example: 

– GammaStone requirement: Heroes do different things
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HotStone Framework 
Code:

GammaStone Delegates

ThaiDanishHeroStrategy



Compositional Variant

• Example: 

– GammaStone requirement: Heroes do different things
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HotStone Framework 
Code:

GammaStone Delegates

ThaiDanishHeroStrategy



Compositional Variant

• Example: 

– GammaStone requirement: Heroes do different things
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HotStone Framework 
Code:

GammaStone Delegates

ThaiDanishHeroStrategy

This is a much better design!
Why? 

Because a) No hard binding in Game b) 
GammaStone requirements are expressed 

explicitly in a single piece of code that bears the 
correct name!



Compositional Variant

• And you can avoid the switching completely

– Put the ‘power strategy’ into the Hero implementation instead;

fetch it, and then apply it…

– Requires a ‘HeroBuildingStrategy’ to create the proper Hero 

types, then…

• Critique: Approaching is a way to implement subclassing 

by hand ☺… 
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Inner and Outer

• Keep inner code (framework code) clean of variability 

switching code; have it in the outer code (delegates)!
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HotStone Framework 
Code:

General Game 
implementation, 
general Hero and 

Card 
implementations

Delegates

HeroAction

WinnerDetermination
WinnerDetermination

….

Closed for 
Modification

Open for 
Extension



Clean Code: Prefer Exceptions



Uncle Bob

• Prefer exceptions over returning status codes

– Throw PageDoesNotExistException instead of 

return E_PAGE_DOES_NOT_EXIST

• So why have you decided on the Status enum???

• Argument

– Hm hm hm… None!

– Conclusion: On the ToDo list for next year

• But keep it as the GUI will assume it!
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